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In Section 2 we present the N P F difference scheme
to solve the convection-diffusion equation (1), describe itsWe introduce a multigrid algorithm to solve the convection-

diffusion equations using a nine-point compact difference scheme. implementation with multigrid, and carry out a Fourier
We test the efficiency of the algorithm with various smoothers and smoothing analysis of the Gauss–Seidel operator. In Sec-
intergrid transfer operators. The algorithm displays a grid-indepen- tion 3 we present numerical experiments that demonstrate
dent convergence rate and produces solutions with high accuracy.

the effectiveness and accuracy of the multigrid algorithm.Numerical results are presented to validate the conclusions. Q 1997

The paper ends with discussion and conclusions.Academic Press

2. THE MULTIGRID IMPLEMENTATION
1. INTRODUCTION

2.1. The Compact Nine-Point Stencil
Consider the two-dimensional convection-diffusion

Let h(51/N) be the uniform mesh-size. The finite differ-equation
ence approximation for convection-diffusion equation (1)
at a grid point (x, y) which is denoted by x0 (Fig. 1) involvesLu ; uxx 1 uyy 1 sux 1 tuy 5 f(x, y), (x, y) [ V,

(1) eight neighboring mesh points at (x 6 h, y), (x, y 6 h),
u(x, y) 5 g(x, y), (x, y) [ ­V, (x 6 h, y 6 h). These points are denoted by xi, i 5 1, 2,

..., 8, and the values of a function u at the point i are denoted
which often appears in the description of transport phe- by ui. A compact fourth order approximation (N P F ) of
nomena. The magnitudes of s and t determine ratios of the convection-diffusion equation (1) is given by [6]
convection to diffusion. In many problems of practical
interest the convective terms dominate the diffusion and
the values of s and t are large. Many numerical simulations O8

i50
ai ui 5

h2

2
[( f4 1 f3 1 f2 1 f1 1 8f0)

(2)of (1) become increasingly difficult (converge slowly or
even diverge) as the ratio of convection to diffusion in- 1 c( f1 2 f3) 1 d( f2 2 f4)],
creases.

For convection-diffusion equations with constant coef-
where ui and ai are depicted by the stencil in Fig. 1 andficients (1), Gupta et al. [6] proposed a compact fourth-
c 5 sh/2 and d 5 th/2 are the cell Reynolds numbers.order finite difference scheme which was shown to be both

When the cell Reynolds numbers d and c are greateraccurate and cost-effective; it is also stable for all values
than 1.0, the coefficient matrix is no longer an M-matrixof s and t. In [7], this compact nine-point formula (N P F )
(see [13] for the definition of M-matrix). The numericalwas extended to solve convection-diffusion equations with
experiments conducted in [6] showed that this scheme con-variable coefficients. The new scheme also has a truncation
verges for any values of d and c when classical iterativeerror of order h4 and the resulting systems of linear equa-
methods are used.tions could be solved by classical iterative methods for

large values of s and t.
2.2. The Multigrid Method

In this paper, we present a method that combines
multigrid techniques with N P F to solve the convection- The multigrid method is among the fastest and most

efficient iterative algorithms for solving linear systems aris-diffusion equation (1). For a wide range of s and t, we
compare the effectiveness of a number of smoothers for ing from discretizing elliptic differential equations (see [3,

12]). This method offers convergence rates independentsolving the linear systems resulting from the use of N P F .
We also compare the choices of the intergrid transfer oper- of the grid size and is very effective for solving large scale

computation-intensive problems. Structurally, the algo-ators.
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FIG. 1. Labeling of grid points and compact nine-point stencil.

rithm iterates on a hierarchy of consecutively coarser and requires the knowledge of f(x, y) on the boundary. We
assume that f(x, y) is extended naturally to ­V.coarser grids until convergence is reached; considerable

computational time is saved by doing the major amount To efficiently utilize the computational space, practical
multigrid solvers use a single long vector to store the dis-of computations on the coarse grids. For more details on

the motivation, philosophy, and processes of the multigrid cretized values of u and f (F here) for all grid levels [5].
On the coarse grids, u and f locations contain coarse gridmethod, one is referred to [3, 5, 11, 14] and the refer-

ences therein. corrections and residuals, respectively. The values of F0 as
defined by (3) are only evaluated once on the finest gridWe design our nine-point multigrid (N P F -MG) solver

as follows: when the data are initialized.
For multigrid, as with the classical iterative methods,

(1) Start from the fine grid with an initial guess and the computational considerations correspond to finding a
perform n1 N P F relaxation sweeps. relaxation procedure that properly damps the high fre-

(2) Calculate the residual on the fine level and proj- quencies. In particular, even if d and c are fairly modest on
ect it onto the coarse level. the finest grid, it may still be difficult to find an appropriate

smoother on the coarse grid levels due to the fact that the(3) Perform 2 multigrid cycles on this grid.
effective values of the cell Reynolds numbers d and c(4) Interpolate the coarse grid correction to the fine
become large on coarser grids.grid by bi-linear interpolation.

(5) Perform n2 N P F relaxation sweeps on the 2.4. Fourier Smoothing Analysis
fine grid.

For the multigrid implementation of the convection-dif-
This corresponds to a W-cycle. We use either full-weighting fusion equations with constant coefficients, it is natural to
or full-injection for fine to coarse grid transfer operation use the lexicographical Gauss–Seidel (L) smoother. We
in Step (2). For relaxation in Steps (1) and (5) we consider carry out a simple Fourier analysis to predict the effective-
the following smoothers: the lexicographical Gauss–Seidel ness of this smoother. The general idea behind smoothing
(L), red-black Gauss–Seidel (R), red-black horizontal line analysis is to determine how well the relaxation procedure
Gauss–Seidel (Z), symmetric (forward followed by back- damps the high frequency errors. If the coarse grid correc-
ward) horizontal line Gauss–Seidel (S), alternating (hori- tion satisfactorily annihilates the low frequencies, then the
zontal followed by vertical) zebra (AZ), and four-direction smoothing analysis will accurately predict the asymptotic
(forward and backward horizontal and vertical) Gauss– multigrid convergence rate [3, 14].
Seidel (F) (see [14, Chap. 4.3] for a description of these The smoothing number e(N P F ) of N P F is given
smoothers). by

2.3. Special Treatments
e(N P F )

In the context of multigrid, the right-hand side as it
appears in (2) is only evaluated once on the finest grid
when the initialization of data is performed. We may define

5 max
uu u$f/2

(1 2 c 1 d 2 cd)ei(2u11u2) 1 (4 1 4d 1 2d2)eiu2

1 (1 1 c 1 d 1 cd)ei(u11u2) 1 (4 2 4c 1 2c2)e2iu1

(1 1 c 2 d 2 cd)ei(u12u2) 1 (1 2 c 2 d 1 cd)e2i(u11u2)

1 (4 2 4d 1 2d2)e2iu2 1 (4 1 4c 1 2c2)eiu1

2 (20 1 4c2 1 4d2)

,

F0 5 As[ f4 1 f3 1 f2 1 f1 1 8f0 1 c( f1 2 f3) 1 d( f2 2 f4)], (3)

and (2) becomes

where uu1u, uu2u # f and uuu 5 max(uu1u, uu2u).
We plot the values of e(N P F ) as a function of d andO8

i50
ai ui 5 h2F0. (4)

c in Figs. 2, 3 for two cases: (1) when d 5 0 and the
convection is parallel to x-axis (this case is called aniso-
tropic) and (2) when c 5 d and the direction of convectionThe computation of F0 for grid points close to the boundary
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TABLE I

Number of Iterations

s N 5 16 N 5 32 N 5 64

10000 52 164 350
100000 53 171 533
1000000 53 171 537
10000000 53 171 537

Note. Test Problem 1 with lexicographical Gauss–Seidel and full-
weighting, t 5 0.

The Fourier smoothing analysis indicates, as expected,
that the lexicographical Gauss–Seidel (L) is not effective
for the case d 5 0 and some other smoothers must be
considered. In the next section we compare the computa-

FIG. 2. Smoothing numbers for N P F lexicographical Gauss–Seidel tional performances of various smoothers.
when d 5 0.

3. COMPUTATIONAL EFFICIENCY

We give convergence data for two problems usingis along the line y 5 x. Though the graphs are plotted for
N P F with multigrid (N P F -MG). The test problemsc values in the interval [0, 20], similar behavior is apparent
were solved on a unit square [0, 1] 3 [0, 1] using a uniformfor larger c (.1000).
meshsize h (51/N). The multigrid W-cycle algorithm wasWe observe that N P F yields convergent smoothing
applied and the calculations were done on a Siliconrates (i.e., e , 1) for all values of c and d, even when the
Graphic Indy workstation using FORTRAN 77 program-operator is highly convective. However, the smoothing rate
ming language in 64-bit precision. We chose the initialdeteriorates (i.e., e P 1) for the first case (d 5 0) for large
guess as u(x, y) 5 sin(x 1 y). Unless otherwise specified,c and we expect the multigrid method to converge very
the computation is terminated when the discrete euclideanslowly in this case. In the second case when c and d are
norm of the initial residual is reduced by tol 5 105. Weequal and large, the value of e tends to a constant (P0.73)
employ the standard coarsening technique (the mesh-sizeand we expect the multigrid method to perform well for
of the coarse grid doubles that of the fine grid) and thethis case.
coarsest grid contains only one unknown.

3.1. Comparison of Smoothers and Intergrid Transfer
Operators

We first compare the performance of six smoothers fre-
quently used to solve partial differential equations.

As Test Problem 1 we take the boundary value problem
(1) with

TABLE II

Number of Iterations

s N 5 16 N 5 32 N 5 64

10000 29 55 94
100000 29 51 92
1000000 29 51 88
10000000 29 51 87

FIG. 3. Smoothing numbers for N P F lexicographical Gauss–Seidel Note. Test Problem 1 with lexicographical Gauss–Seidel and full-
weighting, s 5 t.when c 5 d.
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TABLE III

Number of Iterations

N 5 16 N 5 32 N 5 64

s Z F S AZ Z F S AZ Z F S AZ

10000 29 17 16 34 93 51 51 108 201 110 109 224
100000 29 17 16 34 96 53 53 112 307 171 169 356
1000000 29 17 16 34 96 53 53 112 308 172 171 358
10000000 29 17 16 34 96 53 53 112 308 172 171 358

Note. Test Problem 1 with red-black horizontal line (Z), four-direction (F), symmetric horizontal line Gauss–Seidel (S), alternating zebra (AZ),
and full-weighting, t 5 0.

f(x, y) 5 2(2 1 s(2x 2 1))(cos 2fy 2 1) values of s and t, the red-black Gauss–Seidel (R) is not
robust as discovered by Wesseling [14] for the five-point

2 4fx(x 2 1)(2f cos 2fy 1 t sin 2fy), (5)
star formula with dissipation terms. However, as we see
at the end of this section, this smoother is very efficientg(x, y) 5 2x(x 2 1)(cos 2fy 2 1).
when we change the restriction operator in the N P F -
MG algorithm.This problem was used by Gupta et al. [6] to test N P F

in the context of direct methods and classical iterative For problems with grid aligned convection (t 5 0),
robust smoothers are symmetric horizontal line Gauss–methods such as the SOR (successive over-relaxation)

method. Seidel (S), alternating zebra (AZ), red-black Gauss–Seidel
horizontal line (Z), and four-direction Gauss–Seidel (F)We solve this problem with N 5 16, 32, 64 and for large

values of s for the two cases when t 5 0 and t 5 s. In [14]. We now examine how these smoothers affect the
convergence of N P F -MG.Table I and II we present the number of iterations when

full-weighting and lexicographical Gauss–Seidel smooth- In Tables III, IV we give the convergence performance
data for these four smoothers for Test Problem 1 usingers are employed and observe that N P F -MG converges

for any N and any s. As s increases, the number of itera- full-weighting and note that all four smoothers give a better
convergence than the classical Gauss–Seidel (as seen intions tends to a constant for a given N. The highly convec-

tive behavior of the equation does not seem to affect the Tables I and II). The best results are obtained with the
four-direction Gauss–Seidel (F) and the symmetric hori-convergence of N P F . However, as N increases, the num-

ber of iterations dramatically increases. Moreover as pre- zontal line Gauss–Seidel (S) relaxations.
We performed similar computations for other convec-dicted by the Fourier smoothing analysis, the performance

of the lexicographical Gauss-Seidel (L) method is better tion directions; e.g., for t/s 5 a with a 5 5, 1/5 and discov-
ered that the results are similar to the case whenwith s 5 t (Table II) than with t 5 0 (Table I).

We also solved this problem with red-black Gauss– t/s 5 1: the four-direction Gauss–Seidel and the symmet-
ric horizontal line Gauss–Seidel methods are the mostSeidel (R) and found this method (R) to be worse than

(L) when full-weighting is utilized. For problems with large efficient smoothers.

TABLE IV

Number of Iterations

N 5 16 N 5 32 N 5 64

s Z F S AZ Z F S AZ Z F S AZ

10000 22 14 16 21 42 28 31 41 72 46 51 70
100000 22 14 16 21 40 28 30 39 72 51 56 72
1000000 22 14 16 21 39 27 30 39 69 50 54 69
10000000 22 14 16 21 39 27 30 39 69 50 54 69

Note. Test Problem 1 with red-black horizontal line (Z), four-direction (F), symmetric horizontal line Gauss–Seidel (S), alternating zebra (AZ),
and full-weighting, s 5 t.
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TABLE V TABLE VII

Time for n 5 64Computational Cost for the Different Smoothers

L R F Z S AZ s L Z F S AZ

1000 2.29 2.61 2.13 2.25 2.501 WS 1 WS 4 WS 2 WS 4 WS 2 WS
10000 5.84 6.96 7.58 8.20 6.80
100000 5.72 6.93 8.32 9.12 7.08Note. Lexicographical Gauss–Seidel (L), red-black Gauss–Seidel (R),

red-black horizontal line (Z), symmetric horizontal line Gauss–Seidel 1000000 5.47 6.70 8.14 8.70 6.67
10000000 5.55 6.60 8.14 8.70 6.67(S), Alternating Zebra (AZ), four-direction Gauss–Seidel (F).

Note. Test Problem 1 with lexicographical Gauss–Seidel (L), red-black
horizontal line (Z), four direction (F), symmetric horizontal line Gauss–
Seidel (S), alternating Zebra (AZ), and full-weighting, s 5 t.We now examine the computational cost of these

smoothers. To perform the red-black horizontal line (Z)
relaxation, the grid points of each line are visited twice
before going to the next line. This is in fact a pseudo-line The previous computations were done using full-
relaxation. A similar technique is used for the symmetric weighting as a projection operator. We also utilized full-
horizontal line (S) relaxation. If one work sweep (WS) is injection with injection factor b 5 2.0 (direct injection of
defined to be the cost of performing one lexicographical the fine grid residuals to the corresponding coarse grid
Gauss–Seidel (L) sweep, the computational cost for all point weighted by the constant b) for the case t/s 5 1 and
six smoothers may be summarized in Table V. The four- give the convergence data in Table VIII. It is noted that
direction (F) and the symmetric horizontal line (S) smooth- the use of full-injection significantly reduces (up to 70%
ers cost 4 WS; the red-black horizontal (Z) and the alternat- for N 5 64) the number of iterations when the classical
ing zebra (AZ) cost 2 WS. In Tables VI and VII we give Gauss–Seidel (L) is used (compare Table VIII with II).
the CPU times in seconds for five smoothers for N 5 64. Similar reduction is also observed for the four-direction
We note that the symmetric horizontal line Gauss–Seidel Gauss–Seidel (F) (compare Table VIII with IV). The most
(S) gives the best performance for t 5 0, whereas the interesting result is obtained with red-black Gauss–Seidel
classical Gauss–Seidel (L) has the smallest overall CPU (R): its convergence is faster than that of the four-direction
time for t 5 s. (F) smoother even though this smoother requires 4 WS

As expected, the smoothers with larger WS require whereas the red-black Gauss-Seidel costs 1 WS. In addi-
fewer number of iterations to converge. However, this does tion, with red-black Gauss–Seidel, the rate of convergence
not necessarily translate into smaller overall CPU time. seems to exhibit h-independence.

The performance of multigrid methods depends not only For the case t 5 0, the use of full-weighting and full-
on the smoothing technique but also on the coarse-grid injection give approximatively the same rate of conver-
approximations to the fine-grid problem. A proper choice gence for all three smoothers. But if we include the CPU
of projection and prolongation operators can often im- time, the full-injection is more cost effective.
prove the convergence. A good convergence rate with a When the coefficients s and t are small the full-weighting
particular smoother is characterized by the h-indepen- performs better than the full-injection operator (as seen
dence; i.e., the number of iterations should be constant for in our other works [9, 10]). The efficiency of full-weighting
any values of h (or N). for diffusion dominated and full-injection for convection

TABLE VI TABLE VIII

Time in Seconds for n 5 64 Number of Iterations

s L Z F S AZ N 5 16 N 5 32 N 5 64

s L F R L F R L F R1000 1.13 1.72 1.46 1.44 1.83
10000 21.9 19.4 17.9 17.4 29.3
100000 34.0 29.7 28.0 27.3 34.9 10000 13 9 8 22 15 11 31 21 13

100000 13 9 8 19 13 10 26 20 91000000 33.5 29.9 31.0 27.5 34.8
10000000 33.4 29.9 31.0 27.5 34.8 1000000 13 9 8 19 13 9 25 19 9

10000000 13 9 8 19 13 9 25 19 9
Note. Test Problem 1 with lexicographical Gauss–Seidel (L), red-black

horizontal line (Z), four direction (F), symmetric horizontal line Gauss– Note. Test Problem 1 with lexicographic Gauss–Seidel (L), red-black
Gauss–Seidel (R), four-direction (F), and full-injection, s 5 t.Seidel (S), alternating Zebra relaxation (AZ), and full-weighting, t 5 0.
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TABLE IX

Number of Iterations

a 5 f/3 a 5 2f/3 a 5 f/10 a 5 4f/10

«7 N⇒ 64 128 256 64 128 256 64 128 256 64 128 256

1026 9 9 8 10 9 8 20 21 20 20 22 21
1027 9 9 8 10 9 8 20 21 20 20 22 20
1028 9 9 8 10 9 8 20 21 20 20 22 20

Note. Test Problem 2 with red-black Gauss–Seidel and full-injection projection.

dominated problems is consistent with the following rela- Similar results are obtained with other test problems and
larger values of s and t [10].tionship between the orders of inter-grid operators and

the order of the original equation [11],
4. DISCUSSION

mP 1 mR . 2m,
We discovered that the red-black Gauss–Seidel method

is a good smoother for N P F with the injection as restric-where mP is the order of the prolongation operator (2 for
tion operator. We took the injection scaling factor b to bethe bi-linear operator), mR the order of the restriction (2
2. A natural choice often is b 5 1 (corresponding to full-for full-weighting and 0 for full-injection), and 2m the order
injection) and the red-black Gauss–Seidel (R) still givesof the differential equation (2 when the problem is diffu-
a constant grid-independent rate of convergence thoughsion dominated and 1 when convection dominated).
with a higher number of iterations. With the other smooth-
ers (L, F, Z, AZ) considered here, the use of full-injection3.2. Dependence on the Convection Direction
and full-weighting gives either the same results or the re-

We now consider Test Problem 2 sults sometimes deteriorate with the injection operator.
For red-black Gauss–Seidel, b 5 1 works well when s and

«(uxx 1 uyy) 1 cos aux 1 sin auy 5 0, (6) t are relatively small; b 5 2 is more efficient when s and
t are large.

where « is positive, a is any real number, and u is prescribed One may consider the use of a four-color ordering in-
to be 0 on the boundary: the exact solution is u 5 0. stead of two-color ordering (red-black Gauss–Seidel).
Equation (6) reduces to Eq. (1) with s 5 cos a/« and t 5 However, our experiments showed that the four-color or-
sin a/«. dering does not even perform as well as the lexicographical

In the previous section, we observed that for large values Gauss–Seidel (L). In [9] we note that for the Poisson equa-
of cell Reynolds numbers c and d, the red-black Gauss– tion the more colors we use, the closer we come to the
Seidel smoother performs well if it is used in conjunction Jacobi relaxations.
with full-injection. This observation was made when the Our numerical experiments show that N P F -MG is
‘‘angle’’ of convection was f/4 (s 5 t). We solve Test stable and achieves high accuracy. Other approaches are
Problem 2 with small values of « and different convection
directions (choices of a) for N 5 64, 128, 256. The results
summarized in Table IX show that for all cases, N P F -

TABLE XMG converges very rapidly and for a given a, the rate of
convergence seems to be independent of N and «.

N IT CPU (s) Error

3.3. Computed Accuracy 8 9 0.014 5.80(23)
16 11 0.044 3.65(24)

We observe that the accuracy of the computed solutions 32 9 0.136 2.27(25)
is not affected by the choice of smoothers. In Table X, we 64 7 0.44 1.42(26)

128 6 1.62 8.91(28)give sample accuracy data of N P F solutions for Test
256 6 6.91 5.57(29)Problem 1 with s 5 t 5 16. We present the maximum
512 6 29.5 3.48(210)error, the CPU times, and the number of iterations for

different values of the mesh size. The errors are seen to Note. Number of iterations (IT), CPU time, and accuracy for Test
decay in accordance with O(h4) truncation error: the errors Problem 1 with RB Gauss–Seidel, full-weighting projection, s 5 t 5 16,

tol 5 1010.decay by a factor of 16 when the mesh size is halved.
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